Single crystal metal-organic framework constructed by vertically self-pillared nanosheets and its derivative for oriented lithium plating

نویسندگان

چکیده

This vertically self-pillared (VSP) structure extends the application range of traditional porous materials with facile mass/ion transport and enhanced reaction kinetics. Here, we prepare a single crystal metal-organic framework (MOF), employing ZIF-67 as proof concept, which is constructed by nanosheets (VSP-MOF). We further converted VSP-MOF into VSP-cobalt sulfide (VSP-CoS2) through sulfidation process. Catalysis plays an important role in almost all battery technologies; for metallic batteries, lithium anodes exhibit high theoretical specific capacity, low density, redox potential. However, during half-cell (Li++e=Li), uncontrolled dendritic Li penetrates separator solid electrolyte interphase layer. When employed composite scaffold metal deposition, there are many advantage to using this framework: 1) VSP-CoS2 substrate provides surface area dissipate ion flux mass transfer acts pre-catalyst, 2) catalytic Co center favors charge process preferentially binds Li+ electrical fields, 3) VSP guides propagation along nanosheet 2D orientation without protrusive dendrites. All these features enable batteries encouraging performances.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of Methane Adsorption by Lithium Doping into Metal-Organic Framework Cu-BDC

Copper (II) carboxylate, (Cu-BDC), metal-organic-framework (MOF) has been synthesized undersolvothermalconditions and used as a new adsorbent for the methane. The Lithium doping intoCu-BDC, (Li-Cu-BDC), is made by impregnating Cu-BDC with an ethanol solution ofLiNO3, followed by heat treatment in vacuum. The adsorbent was characterized by X-ray diffraction (XRD), Fourier transform infrared ...

متن کامل

Synthesis of Nanoporous Metal Organic Framework MIL-53-Cu and Its Application for Gas Separation

MIL-53-Cu has been synthesized hydrothermally and has been used for the first time for gas separation. MIL-53-Cu shows adsorption capacities of 8.1, 0.7 and 0.5 m.mol/g, respectively, for CH4, CO2 and H2 at 30 bar and 298 K. The high CH4 adsorption capacity of MIL-53-Cu maybe attributed to the high pore volume and large number of open metal sites....

متن کامل

Metal–Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal–Organic Framework

We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed "double cluster" (Hf12O8(OH)14), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxi...

متن کامل

Interfacial growth of large-area single-layer metal-organic framework nanosheets

The air/liquid interface is an excellent platform to assemble two-dimensional (2D) sheets of materials by enhancing spontaneous organizational features of the building components and encouraging large length scale in-plane growth. We have grown 2D molecularly-thin crystalline metal-organic-framework (MOF) nanosheets composed of porphyrin building units and metal-ion joints (NAFS-13) under opera...

متن کامل

Self-Exfoliated Metal-Organic Nanosheets through Hydrolytic Unfolding of Metal-Organic Polyhedra.

Few-layers thick metal-organic nanosheets have been synthesized using water-assisted solid-state transformation through a combined top-down and bottom-up approach. The metal-organic polyhedra (MOPs) convert into metal-organic frameworks (MOFs) which subsequently self-exfoliate into few-layered metal-organic nanosheets. These MOP crystals experience a hydrophobicity gradient with the inner surfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chinese Journal of Catalysis

سال: 2021

ISSN: ['0253-9837', '1872-2067']

DOI: https://doi.org/10.1016/s1872-2067(20)63755-x